If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5x+x^2-14=0
a = 1; b = -5; c = -14;
Δ = b2-4ac
Δ = -52-4·1·(-14)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-9}{2*1}=\frac{-4}{2} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+9}{2*1}=\frac{14}{2} =7 $
| -8=2a | | -j+14=6 | | 10+6x=-2(x-8) | | x+2=49-x(x) | | 80+16x+4=180 | | -7=-p-2 | | x+2=49+x(x) | | 9=5+c | | 2(y-1)2+8=80 | | x+2=(7-x)(7-x) | | 4(6-x)-2(3-x)-5=(5-2x) | | 3(r-1)=4(6) | | (+9x^2+3x+3x+1)(+9x^2+3x+3x+1)=16 | | 4/7x3=12/21= | | 1.4-0.6=0.2(5+3z) | | (3x+1)(3x+1)(3x+1)(3x+1)=16 | | 4-b÷2=10 | | 60=1/4g+12;g=12 | | 2c=-13 | | 5=15+x | | 20-2t=1/2t+28;t=-3.2 | | 11=2/3x-1;x=15 | | 4x-6,x=5 | | 100−3x=-50 | | 6x2-40=110 | | 650=x+0,25x | | -23=x-8 | | -3(v-3)=-5v+13 | | -10=2+b | | 49=x^ | | 11=15x=-7+13x | | 3(y+8)-5y=16 |